Site FMPMC
     Page précédentePage suivanteSommaireVersion imprimable
   
 

Histologie : les tissus

Sites à visiter

Table des Matières

Avant-Propos

1 - Méthodes de l'Histologie. Concept de tissu

2 - Les relations intercellulaires

3 - Les épithéliums

4 - Les tissus conjonctifs. Les tissus adipeux

5 - Les tissus squelettiques

6 - Les populations cellulaires « libres »

7 - Système nerveux et neurones

8 - Les systèmes nerveux central et périphérique

9 - Les tissus musculaires


Tous droits de reproduction réservés aux auteurs


traduction HTML V2.8
V. Morice


Chapitre 7 - Le système nerveux. Les neurones

 

7.2 - Les neurones

7.2.3 - La membrane plasmique neuronale est le siège des synapses

 

Les synapses sont des zones spécialisées de contact membranaire permettant la transmission de l’influx nerveux d’un neurone à un autre neurone ou d’une cellule réceptrice à un neurone ou d’un neurone à une cellule effectrice.

Les synapses électriques sont des jonctions communicantes assurant le couplage électrotonique des deux neurones qu’elles relient ; a diffusion électrotonique de l’influx nerveux y est passive, bidirectionnelle, très rapide, sans fatigabilité,

Dans la pratique courante, le terme de synapse désigne en fait uniquement les synapses chimiques, au niveau desquelles la transmission de l’influx nerveux se fait de façon unidirectionnelle par l’intermédiaire de molécules de signalisation ou neurotransmetteurs (ou médiateurs chimiques).

Les synapses ne sont pas visibles en MO. Leur identification et leur étude morphologique nécessite la ME.

Chaque synapse comporte un élément présynaptique et un élément post-synaptique séparés par une fente synaptique comprise entre la membrane présynaptique et la membrane postsynaptique. Après avoir intégré les informations qu’il a reçues, le neurone y répond d’une façon univoque en libérant dans la fente synaptique un ou plusieurs neurotransmetteurs contenus dans des vésicules synaptiques. Ces molécules agissent directement sur le neurone post-synaptique.

7.2.3.1 L’élément pré-synaptique renferme les vésicules synaptiques contenant les neurotransmetteurs

En dehors des mitochondries et du cytosquelette, les deux constituants les plus importants de l’élément présynaptique sont les vésicules synaptiques (dites aussi vésicules présynaptiques) et l’épaississement de la membrane présynaptique. Le feuillet interne de la membrane présynaptique apparaît en effet plus épais et plus dense aux électrons que le reste de la membrane plasmique du neurone. Cette densification membranaire correspond à une structure complexe appelée grille présynaptique, faite de l’arrangement régulier, trigonal, de projections denses reliées par de fins microfilaments et circonscrivant ainsi des emplacements où les vésicules synaptiques peuvent se loger individuellement. De petites dépressions (synaptopores) visibles à la face externe de la membrane présynaptique s’enfoncent en regard des emplacements vésiculaires situés sur l’autre face de la membrane.



Les vésicules synaptiques peuvent être classées selon leur taille, leur forme, la densité de leur contenu et surtout la nature des neurotransmetteurs qu’elles déversent dans la fente synaptique. Les études en immunocytochimie et en hybridation in situ ont bien montré que la co-localisation de différents neurotransmetteurs et/ou neuromodulateurs dans une même synapse est fréquente.

Les petites vésicules synaptiques renferment des neurotransmetteurs classiques
Elles sont groupées près des « zones actives » de la membrane présynaptique. Après leur exocytose, elles sont recyclées et remplies localement. Leur membrane est riche en synaptophysine, protéine transmembranaire majeure des petites vésicules synaptiques du SNC et du SNP ainsi que des cellules neuroendocrines. Ces vésicules ne contiennent pas de protéines solubles du type de la chromogranine.
On distingue 3 variétés de petites vésicules synaptiques : 1) les petites vésicules synaptiques sphériques à centre clair ont un contenu transparent aux électrons, fait d’acétylcholine, d’acides aminés excitateurs (glutamate ou aspartate) et/ou de purines (ATP, adénosine) ; 2) les petites vésicules synaptiques sphériques à centre dense renferment des amines biogènes (catécholamines [noradrénaline, adrénaline, dopamine], sérotonine, histamine) et/ou des purines ; 3) les petites vésicules synaptiques ovalaires à centre clair contiennent souvent des neurotransmetteurs inhibiteurs comme le GABA (acide gamma-amino-butyrique) ou la glycine.
Le cycle des petites vésicules synaptiques dans la terminaison nerveuse requiert successivement : 1) le remplissage des vésicules avec le neurotransmetteur, 2) la translocation des vésicules vers les zones actives de la membrane présynaptique, 3) l’arrimage des vésicules à la membrane plasmique présynaptique, 4) la fusion des membranes avec ouverture de « pores » de fusion, 5) la libération du neurotransmetteur par exocytose dans la fente synaptique, 6) le recyclage membranaire des vésicules. La fusion des vésicules synaptiques avec la membrane plasmique et l’exocytose du neurotransmetteur sont déclenchées par l’arrivée du potentiel d’action (influx nerveux) qui, lorsqu’il atteint l’extrémité synaptique, entraîne la dépolarisation de la membrane présynaptique et, par voie de conséquence, l’ouverture des canaux calciques voltage-dépendants situés dans cette membrane et donc l’entrée de Ca++ dans la terminaison présynaptique.
Le mécanisme intime par lequel le neurotransmetteur est libéré dans la fente synaptique répond à la description générale du phénomène d’exocytose qui a été exposée dans le chapitre 3. Le rôle majeur est donc dévolu au complexe formé par l’interaction des protéines cytoplasmiques NSF et SNAPs avec les glycoprotéines membranaires v-SNAREs et t-SNAREs. La synaptotagmine (calmodulin-binding protéine transmembranaire présente dans toutes les vésicules synaptiques) joue un rôle majeur dans le déclenchement du processus d’exocytose par le Ca++ entré dans la cellule.
Les grandes vésicules synaptiques à centre dense renferment des neuropeptides, éventuellement associés à des neurotransmetteurs classiques
Les grandes vésicules synaptiques à centre dense sont sphériques, d’un diamètre supérieur à celui des petites vésicules synaptiques et contiennent en leur centre un grain dense aux électrons séparé de la membrane par un halo clair. Elles sont produites dans le corps cellulaire au niveau de l’appareil de Golgi. Elles contiennent des neurohormones ou des neuropeptides, éventuellement associés à des neurotransmetteurs classiques. Elles contiennent également des protéines solubles du type de la chromogranine.
Les neuropeptides sont plus des neuromodulateurs que des neurotransmetteurs au sens propre. On distingue les neuropeptides opioïdes (ou endorphines), agonistes endogènes naturels des récepteurs aux opiacés, et les neuropeptides non-opioïdes (ocytocine, vasopressine, somatostatine, neuropeptide Y, etc). Leur libération à partir des terminaisons nerveuses du SNC a plus de points communs avec la libération des hormones à partir des cellules endocrines qu’avec l’exocytose des petites vésicules synaptiques. L’exocytose des grandes vésicules à centre dense se distingue en effet de celle des petites vésicules synaptiques par au moins 4 points : 1) elles sont situées à distance des zones actives et les neuropeptides sont libérés de façon ectopique, c’est à dire pas directement dans la fente synaptique ; 2) il n’y a pas de recyclage local des grandes vésicules à centre dense dans les extrémités présynaptiques, car les neuropeptides sont synthétisés de novo par clivage de précurseurs peptidiques synthétisés dans le corps cellulaire ; 3) Les grandes vésicules à centre dense sont dépourvues de la plupart des protéines spécifiques associées aux petites vésicules synaptiques, ou en contiennent des quantités bien moindres (c’est le cas de la synaptophysine) ; 4) Le contenu des grandes vésicules à centre dense est libéré par une augmentation globale de la concentration en Ca++ et non par un couplage localisé entre les canaux calcium et l’exocytose.
Le plus souvent, l’élément pré-synaptique est une terminaison axonale
(cf. plus loin)

7.2.3.2 La fente synaptique est le très mince espace qui sépare la membrane pré-synaptique de la membrane post-synaptique

 

7.2.3.3 L’élément post-synaptique présente de nombreux récepteurs membranaires

En ME, la membrane post-synaptique présente un épaississement dense aux électrons plus important que celui de la membrane présynaptique.

Le neurotransmetteur libéré dans la fente synaptique se fixe sur les récepteurs ionotropiques ou métabotropiques de la membrane postsynaptique.

Les récepteurs ionotropiques (ou récepteurs-canaux)
Leur ouverture est contrôlée par un neurotransmetteur. L’ouverture des canaux sodium, récepteurs de l’acétylcholine ou du glutamate, entraîne l’entrée de Na+ dans l’élément post-synaptique et par voie de conséquence une dépolarisation de la membrane de la cellule-cible et donc une excitation neuronale (synapses excitatrices). L’ouverture des canaux chlore, récepteurs du GABA ou de la glycine, entraîne une hyperpolarisation de la membrane de la cellule-cible et donc une inhibition neuronale (synapses inhibitrices).
Les récepteurs métabotropiques
A la différence des récepteurs ionotropiques, les récepteurs métabotropiques sont séparés des canaux ioniques dont ils règlent le fonctionnement, le couplage étant assuré par une protéine membranaire de la famille des protéines G.
La stimulation de certains neurones post-synaptiques entraîne la production de NO
NO (monoxyde d’azote ou oxyde nitrique) est produit grâce à la présence d’une enzyme, la NO-synthétase, qui peut être détectée par immunocytochimie. C’est par simple diffusion que NO est libéré à travers la membrane du neurone et qu’il pénètre dans le neurone receveur. Son rôle exact est inconnu.
Le plus souvent l’élément post-synaptique est un dendrite (synapses axo-dendritiques) ou un corps cellulaire (synapses axo-somatiques)
Les ramifications dendritiques de certains neurones (comme les cellules pyramidales du cortex cérébral et les cellules de Purkinje du cortex cérébelleux) sont couvertes de très nombreuses petites protrusions, appelées épines dendritiques, qui constituent autant d’éléments post-synaptiques différenciés.


Il existe également des synapses axo-axoniques, où une terminaison axonale présynaptique entre en contact avec l’axone d’un autre neurone soit au niveau de son segment initial, soit tout près de sa propre terminaison ; dans ce dernier cas, cette synapse axo-axonique sert à inhiber le fonctionnement de la terminaison axonale sur laquelle elle fait contact (phénomène de l’inhibition présynaptique).
Plus rarement, il s’agit de synapses dendro-dendritiques, dendro-somatiques, dendro-axoniques, somato-dendritiques, somato-somatiques ou somato-axoniques.

     Page précédentePage suivanteSommaireVersion imprimable
   
 
7.1 - Le système nerveux
7.2 - Les neurones
7.2.1 - La fonction des neurones est indissociable de leur forme
7.2.2 - La structure des neurones est caractéristique
7.2.3 - La membrane plasmique neuronale est le siège des synapses
7.2.3.1 - L’élément pré-synaptique renferme les vésicules synaptiques contenant les neurotransmetteurs
7.2.3.2 - La fente synaptique est le très mince espace qui sépare la membrane pré-synaptique de la membrane post-synaptique
7.2.3.3 - L’élément post-synaptique présente de nombreux récepteurs membranaires