médecine
     Page précédentePage suivanteSommaireVersion imprimable
   
 

Réserves Energétiques

Plan du cours

Objectifs

I - Molécules riches en énergie

1 - Introduction

2 - La voie anaérobie alactique

II - Régulation de la glycémie

3 - Introduction

4 - Mécanismes hyperglycémiants : la glycogénolyse

5 - Mécanismes hyperglycémiants : la gluconéogénèse

6 - Mécanismes hypoglycémiants : la glycogénogénèse

7 - Mécanismes hypoglycémiants : la lipogénèse


Tous droits de reproduction réservés aux auteurs


traduction HTML V2.8
V. Morice


Partie II - Régulation de la glycémie
Chapitre 5 - Mécanismes hyperglycémiants : la gluconéogénèse

 

5.37 - Cycle des Cori

 

Image RE_45_PICT.jpg
RE 45

  • Dans le début de l’effort musculaire, la glycolyse cytoplasmique (GC) anaérobie, utilise rapidement le glucose, produit deux liaisons riches en énergie par glucose oxydé et libère du pyruvate. Le pyruvate est réduit en lactate par l’excédent de NADH ou transaminé en alanine lorsque le muscle (à jeun) catabolise des acides aminés.
  • Le lactate est transporté par le sang vers le foie dont le métabolisme fonctionne toujours en aérobiose. Le foie peut alimenter son métabolisme énergétique uniquement grâce à la β-oxydation en produisant des corps cétoniques. Dans ces conditions, il peut faire sortir le malate hors de la mitochondrie et resynthétiser du glucose par la gluconéogénèse (GNG). Le lactate absorbé par le foie est un substrat de cette gluconéogénèse qui consomme six liaisons riches en énergie par glucose produit. Le foie libère le glucose dans la circulation qui peut à nouveau être oxydé par les muscles.
  • L’association de la glycolyse anaérobie des muscles et de la gluconéogénèse du foie constitue le cycle des CORI (deux biochimistes C. et G. CORI).

     Page précédentePage suivanteSommaireVersion imprimable
   
 
5.1 - Gluconéogénèse (définition)
5.2 - Gluconéogénèse (schéma général)
5.3 - Phosphate de pyridoxal
5.4 - Pyridoxal ↔ Pyridoxamine
5.5 - Transaminases
5.6 - Alanine aminotransférase = ALAT
5.7 - Lactate déshydrogénase
5.8 - Aspartate aminotransférase = ASAT
5.9 - Biotine
5.10 - Biotine → Carboxybiotine
5.11 - Pyruvate carboxylase
5.12 - Glutamate déshydrogénase
5.13 - α-cétoglutarate déshydrogénase (I) : décarboxylase
5.14 - α-cétoglutarate déshydrogénase (II) : transsuccinylase
5.15 - α-cétoglutarate déshydrogénase (III) : lipoyl déshydrogénase
5.16 - Succinyl thiokinase
5.17 - Nucléoside diphosphate kinase
5.18 - Succinate déshydrogénase
5.19 - Fumarase
5.20 - Malate déshydrogénase mitochondriale
5.21 - Gluconéogénèse (schéma général)
5.22 - Sortie du Malate
5.23 - Malate déshydrogénase cytoplasmique
5.24 - Phosphoénolpyruvate carboxykinase = PEPCK
5.25 - Pyruvate kinase
5.26 - Enolase
5.27 - Phosphoglycérate mutase
5.28 - Phosphoglycérate kinase
5.29 - Phosphoglycéraldéhyde déshydrogénase
5.30 - Triose-Phosphate Isomérase
5.31 - Aldolase
5.32 - Fructose 1,6 diphosphate phosphatase
5.33 - Phosphohexose isomérase
5.34 - Glucose 6-phosphatase
5.35 - Gluconéogénèse (schéma général)
5.36 - Gluconéogénèse (bilan)
5.37 - Cycle des Cori
5.38 - Fructose 2,6 diphosphatase = PhosphoFructoKinase II
5.39 - Cortisol
5.40 - Induction par le cortisol
5.41 - Régulation de la gluconéogénèse
5.42 - Interconversions des oses