Compétence et courbe d’apprentissage

Dr David Biau

MCU-PH, Chirurgie orthopédique, Cochin

February 6, 2015
Plan

1. Background
 - Courbe d'apprentissage?
 - Performance?
 - Compétence?

2. LC-CUSUM test
 - Statistical definition
 - Représentation graphique
 - Worked example

3. Applications
 - Competency of radiology residents
 - Competency of gynecology residents
 - Competency of gynecology residents (2)
 - Competency of anesthesiology residents

4. Discussion
Background
T. Wright

“Repetition of the same operation results in less time or effort expended on that operation”

1

courbe d’apprentissage: représentation graphique de la performance au cours de la phase d’apprentissage

1Wright. Factors Affecting the Cost of Airplanes. J. Aero. Sci. 1936
Courbe d’apprentissage d’un endoscopiste pour des cholangiopancreatographies rétrogrades.2

2Schlup et al. ERCP: a review of technical competency and workload in a small unit. \textit{Gastro Endosc} 1997
Performance?

- courbe d’apprentissage ≠ performance
- performance ⇛ % procédures échouées
- apprentissage ⇛ amélioration de la performance
Performance de l’endoscopiste

Graphique de la somme cumulative des échecs

Cumulative sum of failures

Observations

0 50 100 150 200 250 300 350 400 450 500 550
0
10
20
30
40
50
60

4%

18%
Compétence

Être compétent c’est avoir atteint un niveau de performance prédéfini

Compétence déclarée par

- observation d’un tuteur
- réalisation d’un certain nombre de procédure
- fin d’un cursus (internat)

Quand est-ce que la compétence est atteinte?
LC-CUSUM test5

Learning-Curve CUmulative SUMmation test.

5Biau, Porcher. Monitoring a process from an out of control to an in control state. Application to the learning curve. *Statistics in Medicine*, in press.
Hypotheses

- H0 “performance est inadéquate”
- H1 “performance est adéquate”

⇒ LC-CUSUM teste *séquentiellement* H0 contre H1
Définition

LC-CUSUM score

\[S_t = \max(0, S_{t-1} + W_t), \quad S_0 = 0 \]

- **\(S_t \):** LC-CUSUM score au temps/obs \(t \)
- **\(W_t \):** sample weight
- **\(S_t \geq h \iff \) performance adéquate démontrée**
Sample weight

\[W_t = \log \left[\frac{p_0^{X_t}(1 - p_0)^{1-X_t}}{(p_0 + \delta)^{X_t}(1 - p_0 - \delta)^{1-X_t}} \right] \]

- \(X_t \): 0 pour un succès et 1 pour un échec
- \(p_0 \): niveau de performance adéquate
- \(\delta \): zone d’équivalence
Exemple de l’ERCP

- $p_0 = 10\%$ (performance adéquate)
- $\delta = 7.5\%$ (équivalence)
- Sample weight:
 - W_t pour un succès = $+0.09$
 - W_t pour un échec = -0.56
Outcome: 5S, 1F

adequate perf. (H1)

continuation region

0 = absorbing barrier

h = limit
Outcome: 5S, 2F, 5S, 8F

- adequates perf. (H1)
- h = limit
- continuation region
- 0 = absorbing barrier

LC−CUSUM test

Applications

Discussion
Représentation graphique

Outcome: 5S, 2F, 5S, 8F, 9S, 1F, 10S

- LC-CUSUM score
- Time/Observations
- h = limit
- 0 = absorbing barrier
- adequate perf. (H1)
- continuation region

0 = absorbing barrier
Performance du test

- Erreurs de type I et de type II\(^6\)
 - erreur type I: 100%
 - erreur type II: 0%; puissance 100%

- ADR (Alarm Discovery Rate) pour un nombre d’observation, sous H0 et sous H1
 - ADR sous H1: prob. de déclencher une alarme lorsque l’étudiant est compétent
 - ADR sous H0: prob. de déclencher une alarme lorsque l’étudiant n’est pas compétent

\(^6\)Neyman J., Pearson E. On the problem of the most efficient tests of statistical hypotheses. *Philos. Trans. R. Soc. Lond. A.*, 1933
Competency of the endoscopist

- Process: ERCP
- Outcome: successful cannulation of the bile duct
- Adequate performance: 10% failure; equivalence: 7.5%
- \(h = 4.47 \)
 - for 500 procedures
 - ADR1 = 99%
 - ADR0 = 10%
LC-CUSUM test for the endoscopist

Applications
Transvaginal sonography

- Process: diagnosis of endometriomas by transvaginal sonography
- Outcome: identical findings as senior sonographer
- Adequate performance: 15% failure ($\delta = 7.5\%$)
- $h = 1 \iff$
 - for 75 procedures
 - ADR1 = 89%
 - ADR0 = 10%
LC-CUSUM test

Applications

Discussion

Observations

LC−CUSUM score

0 5 10 15 20 25 30 35 40 45

0 0.2 0.4 0.6 0.8 1

Trainee 1

Trainee 2

Trainee 3

Trainee 4

8

Bazot et al. Learning curve of transvaginal ultrasound for the diagnosis of endometriomas assessed by the LC-CUSUM. Fertil Steril. 2011
Embryo transfer

- Process: embryo transfer
- Outcome: positive hCG test
- Adequate performance: 60% failure ($\delta = 10\%$)
- $h = 1.86 \Rightarrow$
 - for 100 procedures
 - ADR1 = 90%
 - ADR0 = 1.7%
Observations
LC−CUSUM score
0 20 40 60 80 100
0.0 0.5 1.0 1.5 2.0
Trainee 1
Trainee 2
Trainee 3
Trainee 4
Trainee 5

Dessolle L et al. How soon can I be proficient in embryo transfer. Human Reprod, 2010
Fetoscopic laser photocoagulation

- process: selective laser photocoagulation in Twin-Twin Transfusion Syndrome
- outcome: at least one survivor
- adequate performance: 18% failure
- $h = 0.95$
 - for 75 procedures
 - ADR1 = 85%
 - ADR0 = 20%
Process: TEA
Outcome:
Adequate performance: 60% failure ($\delta = 10\%$)
$h = 1.86$
\begin{itemize}
 \item for 100 procedures
 \item ADR1 = 90%
 \item ADR0 = 1.7%
\end{itemize}
Weil G et al. Learning of specific procedures and residents technical skills: assessment using a statistical process control method. In progress
Discussion
Mise en place du test LC-CUSUM

- Processus: clairement défini ("Repetition of the same operation")
- Outcome: mesure effectivement le processus (infection et PTH)
- Niveau de performance
- n(obs) autorisé, limite h
- ADR sous H1 et H0
Choisir h et $n(\text{obs})$

définis par l’utilisateur
pas de solution analytique
simulation ($\approx 10,000$ samples)
ADR1 et ADR0
LC−CUSUM test

Applications

Discussion

Time/Observations

LC−CUSUM score

0 10 20 30 40 50 60 70 80

0 1 2 3

\(h = 0.75 \)

power = 99%

\(P(\text{false/\text{al.}}) = 46\% \)

10% failure rate

30% failure rate

10% failure rate

30% failure rate
LC-CUSUM test

Applications

Discussion

Time/Observations

LC−CUSUM score

0 10 20 30 40 50 60 70 80

0 1 2 3

h = 2

10% failure rate

30% failure rate

h

power= 52%

P(false/al.)= 3%
LC−CUSUM score

Time/Observations

h = 2.5

power = 76%

P(false/αl.) = 6%

10% failure rate

30% failure rate
Fin de la surveillance?

1. Compétence est démontrée
 ➞ arrêter la surveillance?
 ➞ utiliser un test pour s’assurer que le processus reste contrôler

2. Compétence non démontrée
 ➞ on déclare l’étudiant non compétent?
 ➞ on recommence le test? (mais on ne contrôle plus les risques d’erreurs)
 ➞ envisager cette possibilité au début
test LC-CUSUM
Détermine quand un étudiant est compétent

- ARRÊTER de former ce qui n’en ont plus besoin
- CONTINUER à former ce qui en ont encore besoin
- utiliser les ressources de manière rationnelle
Compétence et courbe d’apprentissage

Dr David Biau

MCU-PH, Chirurgie orthopédique, Cochin

February 6, 2015
Example de simulation pour h

<table>
<thead>
<tr>
<th>h</th>
<th>18%</th>
<th>23%</th>
<th>27%</th>
<th>30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>99.4</td>
<td>96.0</td>
<td>88.6</td>
<td>80.6</td>
</tr>
<tr>
<td>0.6</td>
<td>96.6</td>
<td>86.0</td>
<td>70.2</td>
<td>56.3</td>
</tr>
<tr>
<td>0.7</td>
<td>93.2</td>
<td>74.5</td>
<td>53.1</td>
<td>38.8</td>
</tr>
<tr>
<td>0.75</td>
<td>91.7</td>
<td>71.7</td>
<td>50.3</td>
<td>35.9</td>
</tr>
<tr>
<td>0.85</td>
<td>84.6</td>
<td>58.2</td>
<td>34.7</td>
<td>22.1</td>
</tr>
<tr>
<td>0.9</td>
<td>81.3</td>
<td>52.7</td>
<td>30.1</td>
<td>17.7</td>
</tr>
<tr>
<td>1</td>
<td>75.2</td>
<td>44.3</td>
<td>23.1</td>
<td>12.7</td>
</tr>
<tr>
<td>1.1</td>
<td>67.7</td>
<td>33.6</td>
<td>16.1</td>
<td>7.8</td>
</tr>
<tr>
<td>1.2</td>
<td>60.3</td>
<td>28.5</td>
<td>11.0</td>
<td>5.6</td>
</tr>
<tr>
<td>1.3</td>
<td>54.3</td>
<td>21.1</td>
<td>7.9</td>
<td>3.0</td>
</tr>
<tr>
<td>1.4</td>
<td>46.5</td>
<td>16.5</td>
<td>5.6</td>
<td>1.9</td>
</tr>
<tr>
<td>1.5</td>
<td>41.3</td>
<td>13.0</td>
<td>4.2</td>
<td>1.5</td>
</tr>
</tbody>
</table>